

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester I

Course Code: 102430105

Course Title: RF and Microwave Circuits

Type of Course: Program Elective I

Course Objectives: To learn the designing techniques of Microwave Circuits.

Teaching & Examination Scheme:

Conta	Contact hours per week			Examination Marks (Maximum / Passing)				
Locturo	Tutorial	Practical	Credits	Internal		External		Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	TULAI
3	0	2	4	30 / 15	20 / 10	70 / 35	30 / 15	150 / 75

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours		
1	Microwave Circuit Theory Principles: Review of microwave theory, Equivalent	8		
	voltages and currents; Z, Y, S, and ABCD parameters; Equivalent circuit			
	representation of microwave junctions; Scattering parameter analysis of			
	microwave junctions; Coupling of waveguides through probes.			
2	Impedance Transformers: Review of single, double and triple-stub tuners,	8		
	waveguide reactive elements, quarter-wave transformers, design of maximally flat			
	and Chebyshev transformers; Introduction to tapered transmission lines.			
3	Power Dividers and Couplers: Scattering matrix of 3and 4-port junctions; Design of	8		
	T-junction and Wilkinson power dividers; Design of 90° and 180° hybrids.			
4	Filters : Analysis of periodic structures, Fouquet's theorem, filter design by	8		
	insertion-loss method, maximally flat and Chebyshev designs.			
5	Design of Microwave Circuits:	7		
	Antennas, couplers, LNAs, mixers, and microstrip filters, transistor amplifier,			
	oscillator.			

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R : Remembering; U : Understanding; A : Application,	
R	U	Α	Ν	Ε	С	N: Analyze; E: Evaluate; C: Create
10	20	20	20	20	10	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Pozar, D.M., "Microwave Engineering", 3 rd Ed., John Wiley & Sons.
2	Edwards, T.C. and Steer M.B., "Foundations for Interconnects and Microstrip Design", 3 rd Ed., John Wiley & Sons
3	Ludwig, R. and Bretchko, P., "RF Circuit Design", Pearson Education.
4	Jia-Sheng Hong M. J. Lancaster, "Micro strip Filters For RF/Microwave Applications", John Wiley & Sons, Inc.
5	Misra, D.K., "Radio-frequency and Microwave Communication Circuits", John Wiley & Sons

Course Outcomes (CO):

Sr.	Course Outcome Statements %weigh					
CO-1	Students would be able to understand microwave communication	20				
	circuits and systems					
CO-2	Students would learn how to design microwave communication circuits 30					
	at different frequencies.					
CO-3	Students will develop the ability to design filters, mixer etc. 30					
CO-4	Students will understand the problem arising to design amplifier, oscillator at high frequency and also get solution of the design of the system.	20				

List of Practicals / Tutorials:

-	
1	(a) To study the characteristics of wave propagation in a waveguide by studying standing
	wave pattern and hence to plot ω - β diagram.
	(b) To verify relationship between guide wavelength λg and free space wavelength λ .
2	Measurement of voltage standing wave ratio (VSWR).
3	To study the characteristics of reflex klystron and hence to determine mode number, transit
	time, electronic tuning range.
4	To study Gunn diode as a modulated source (PIN Modulation) and hence to determine
	modulation depth.
5	To study isolation, coupling co-efficient s and input VSWRs of an E-H tee or magic Tee.
6	To study substitution method for the calibration of a variable attenuator.
7	To study and measure characteristics of the RFIC components (i.e. coupler, filter etc.)
8	Design and simulation of microstrip planar antenna of 5 GHz using CST microwave studio.
9	Design bandpass filter which has center frequency of 5 GHZ having bandwidth of 500 MHz.
10	Design compact UWB antenna having gain of minimum 1dB and frequency range from 3 to
	6 GHz using CST microwave studio.

Sup	Supplementary learning Material:			
1	Scilab 6.1			
2	OPEN EMS , website : <u>http://openems.de/start/index.php</u>			
3	Scikit-RF, website: <u>http://scikit-rf.org/</u>			

4 NPTEL/ Swayam portal website: <u>https://swayam.gov.in/nc_details/NPTEL</u>

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		